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ON A METHOD OF SOLVING A TWO-DIMENS IONAL INTEGRAL EQUATION OF THE 
FIRST KIND WITH A POWER-LAW KERNEL AND 
ITS APPLICATION TO CONTACT PROBLEMS* 

A.N. BORODACHBV 

A method based on Hobson's theorem /l/ is proposed for constructing 
exact solutions of an integral equation of the first kind, defined on an 
elliptical area, with a power-law (polar) kernel and a polynomial right 
side. Solutions of this equation with different asymptotic expansions in 
the neighbourhood of the boundary ellipse are presented in an explicit 
closed form. The problem of the pressure of a stiff elliptical cylinder 
with arbitrary polynomial form for the base in an inhomogeneous elastic 
half-space (v = con&, E= E,z,~) is considered as an illustration. 

Rostovtsev /2,3/. earlier indicated just the functional form of the 
unbounded solution of the equation mentioned, but did not obtain a 
relationship to define the constant coefficients in this solution in 
closed form. The solution for the case when the right side of theintegral 
equation is a polynomial of zeroth power is given in /4/. Results of an 
investigation of integral equations of the first kind with power-law kernel 
defined on circular and strip areas are presented in /4,5/. 

Utilization of Hobson's theorem and the linear recurrence relations 
obtained below for the generalized potential factors of an elliptical 
disc, enables us, in addition to the rest, to get rid completely of the 
awkward apparatus introduced in /3/ for functions generated by Lamd 
ellipsoidal functions, 

1. We denote points of the real Euclidean space R" by x = (xlrzrrxQ) and the points 
RP by x0 = &,x1) and y0 = (yl, y,). Let R* 3 P = {x0: ~,~/a,* + x,*/ae2 < I}. We examine 
following two-dimensional integral equation of the first kind with power-law kernel in 
function p (x0): 

YUEp (x0) = q (Jkl)l x0 E Q 

UEP (4 = 1s lx - Yo I-EP (Yo) dY0 
n 

0.1) 

where the function q and the constant y are assumed known, while the parameter E takes 
arbitrary values in the interval (0,2). Boundary value problems for equations of elliptic type 
reduce to integral equations with such operators. 

The integral operator Ut is a generalized potential (or Reisz potential) with density 
p distributed over an elliptical disc Q. The properties of the operators U, acting in 
spaces of summable functions were discussed in /6/. 

The values of the integral &p(x) at the points x@E!~ determine the internal gen- 
eralized potential of an elliptical disc which we denote by Ut*p (x0). 

Furthermore, we shall assume that 

q (xO=Q~(x0) Emid qmn31m~On hn= co4 U.2) 

where 1 is an arbitrary non-negative integer. 
any function qE f?(Q), 

Such an assumption is fairly general since 
say, can be approximated uniformly by using polynomials so that 

the derivatives of g to k-th order would be approximated uniformly by derivatives of these 
polynomials of corresponding order /7/. 

The integral equation (1.1) is here written as follows: 

QP 60) = 7’Ql (x0) 0.3) 
Its solution is equivalent to that selection of the density p for which the internal 

generalized potential of an elliptical disc would become the given wlynomal v-lQI. The 
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main result referring to the generalized potentials of an elliptical disc was obtained by 
Hobson /l/. A theorem he established enables a double.integral of Q(x) to be reduced to 
a sum (infinite in the general case) of single integrals. 

Using this theorem and omitting the awkward intermediate calculations, we can show that 
if 

where p$ are arbitrary constants (k = 0,1, . . ., [i/21), then 

(1.5) 

Here [Z/21 is the integer part of the number U2, (m), is the Pochhammer symbol, ck' is 
tha binanial coefficient, M=m -i-+-r-s, N-n - j + s, J = {i, j: k + r- V2 (2 - m - n) < 
i+ j<k++r), and also 

(1.6) 

Thus, if the density of the generalized potential has the form (1.4), then the integral 
ytion (1.3) reduces to the following system of linear algebraic equations in the constants 

Poe: 
u.$!, (pi?) = ywlqm (m + n = O,I, . . ., 1) (1.7) 

The system (1.7) consists of t = lit(l + I)(1 + 2) eguations and contains tk = ‘/,_(I - 2k + 

1) (I -2k+2) unknowns so that t > t, and the equality sign holds just for k = 0. Con- 
sequently, the solution of this system, a nd therefore, of the integral equations (1.3) also 
can be constructed for arbitrary values of the constants qmn only when k = 0. For the 
existence of solutions of the type (1.4) for k> 0 it is necessary (and sufficient) that the 
constants qmn satisfy a set of relationships resulting from (1.7) whose quantity equals t - 
tk* 

All possible solutions of the integral equation (1.3) are determined by tha functions 
p(k) (xa) (k = 0, 1, . . ., [Z/21) . Rostovtsev /2,3/ earlier indicated just the functional form of 
the solution p(“,(x,,) but did not obtain a system of algebraic equations in the constants 

p$$ in closed form. 

2, In finding the coefficients of system (1.7) it is necessary to evaluate the improper 
single integrals B$!,,. which we shall call the generalized internal potential factors of 
an elliptical disc. The most logical method for this calculation is to use a reduction 
formula. 

The validity of the following recursion relations is established by direct substitution 

(2.1) 

which will enable us to represent the arbitrary factor B$!,,,. in the form of a linear 
combination of the factors B$‘,,,EB$$. 

The relationship 
(6) (a? --a:*)&,,= B%,,-- B:!,, (2.2) 

that holds for m#O and n#O is also confirmed directly. 
Utilization of the Euler formula for homcgeneous functions results in an important 

auxiliary result 

(2m + I) a,*B&, + (2n + 1) a,aB!,$,,+l = (2m + 2n + E) B,$,’ 

The relationships 

(2.3) 

(2m + 3)ala (a? - arP)B!&~,a=-(2m f 6)&o (U + 

[aly(4m + 5 + 3)-a~*(Zm + S + I)] GL.0 

(2.4) 
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(2n + 3) az2 (al* - aal) B$‘,,, = (2n + E) B$!, -!- 

[aI2 (2n + E + i) -a,* (4n + g + 3)l Bt)n+~ 

completing the system of reduction formulas, result from (2.2) and (2.3). 
The recurrence relations (2.1),(2.2) and (2.4) enable us to represent an arbitrary 

internal potential factor in the form of a linear combination of three main factors Bfj, Bi!, 
and BE 
(2.3) for 

which are not, however, independent. We obtain the equation relating them from 
m=n=O. Consequently, for an efficient evaluation of the integrals #I?,. , , 

it is sufficient to compile tables of values of any two out of the three main factors for 
different ratios a,la,. 

For 5 = 1 when the generalized potential goes over into the harmonic potential of a 
simple layer, the internal potential factors of an elliptical disc result in complete elliptic 
integrals of the first and second kinds /a/. 

3. The selection of the kind of solution of the integral equation (1.3) in contact 
problems is often determined by an a priori knowledge of the nature of the asymptotic 
behaviour of the solution in the neighbourhood of the boundary ellipse r = {x0: zIPlaIa + x,*1 

aI = I), or in parametric form I' = {x&z1 = a, cos 'p,z, = a,sin cp), where cp is the parametric 
angle of the ellipse. 

The solution p(O) (xo)evidentlyhas asingularityatpoints oftheboundaryellipse,whilethe 
solutions p(“) (x0) vanishatthesepoints for k>O. Amore detailedinvestigationofthe 
asymptotic behaviour of the solutionsoftheintegral equation (1.3) is OfinteIZeSt. 

For the points xoEQ the following representations hold /g/: 

x1 = (aI - pqY+) cos rp, x2 = (a* - pP") sin cp (3.1) 
Y = (1 - x2 CoS* q)“, x, = a,la,, 9 = 1 - x1* 

where is the distance to Substituting (3.1) into (1.4), we obtain 

PC”) (p) = (Zp)k+Ue-IL* (cp) + 0 (p”+W p -, 0 (3.2) 

The function L1, (cp) is the coefficient of the principalterm in the asymptotic expansion 
of the solution of the integral equation (1.3) and governs the local behaviour of the solution 
p@) (x0) in the neighbourhood of r. We have 

Lk (cp) = 1: (2p)l-k-Qsp(X) (p) = ( +)p,c’sl E p$!, (aI 00s cp)” (~2~ sin cp)" 
m+tl-o 

(3.3) 

We note that the function Ylends itself to two simple geometric interpretations, namely 

where R is the radius of curvature, and n is the length of a section of the normal for the 
ellipse r. 

4. As an illustration, we examine the problem of the pressure (when there is no friction) 
of a stiff elliptic cylinder with semi-axes a, and a, on an inhomogeneous, isotropic half- 
space x8> 0, whose Poisson's ratio v is constant while the elastic modulus varies with depth 
as given by the power law E = E,x*a (0 <a< I). An elastic half-space with Suchcharacteris- 
tics is sometimes called a quasiclassical foundation /5/. 

We take the function describing the shape of the stamp base in the form 

t4.1) 

Determination of the contact pressure p = -usa here reduces to solving the integral 
equation (1.3) in which E = a + 1 should be set (see /5,10/) and 

Y 
Dr P/r + 42) 

= Zn"C(i +cr/2) ’ 
D = (1 --)Cq 

n(l+u)EJ(a+2)Sin9 

C = 2l-r (V, (a + q + 3)) r (I/, (a - n + 3)) 
q*=l+a - a (1 + a) v (1 - v)-I, qoVo = 6 

ho = -fL qorl = fL. qmn = -4-O (m + n > 1) 

The constants 6, IL Br9 not known in advance, denote the translational displacement and 
rotation vector projection of the stamp, and r (a)is the Gamma function. 

The principal vector and principal moments of the forces applied to the stamp have the 

P=!$~dxo. MI-&pdxo, M2=-~~z,pdxo 
P Q 

and are assumed known. 
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We select 

(4.3) 

as the solution of the integral equation (1.3) that has a singularity at the points x0 E r, 
which results in the following set of linear algebraic equations in 6, f3,,& and p&O): 

u,,(O) (p&O)) = i--‘qmn (m + n = 0, 1, . ., l) (4.1) 

'0) 
The stamp equilibrium conditions (4.2) yield three other linear algebraic equations in 

POW 
t1121 I’M-l)1 

P = B tzm,m~%.mr Ml= 2 tm. m+zp%, zn+l 
m+n* m+nwl 

(4.5) 

P/,(1-01 
MP = - X tzmcz. w,&+~,an 

w-d 

t ??l = 
no*m+l,p+n+l(2m - 1 I)!! (2n - I)!! 

?ix. 
2"+"(412),+,, 

Therefore, if a stiff elliptical cylinder whose base surface is described by (4.1~) is 
impressed in a quasiclassical foundation , the contact pressure has the form (4.3), while the 
constants p&O) and the parameters S,fil, fit are found from the set of linear algebraic equations 
(4.4) and (4.5). The result formulated generalizes Rostovtsev's result /2,3/. 

The solution of the appropriate contact problem for a homogeneous half-space with elastic 
modulus E is obtained as a special case for a = Owhen E = 1 and y = (1 -~*)(zcE)-'. 

It.should be noted that the solution of the appropriate contact problem of non-linear 
steady creep with power-law coupling between the stress intensities and the strain rates, 
obtained within the framework of the principle of superposing "generalized" displacements 
/ll/ (some constraints on such an approach are mentioned in /12/) also results in an integral 
equation of type (1.3). 

5. Let a stiff elliptic cylinder with a flat base be subjected to a central force P in 
an inhomogeneous half-space. In this case, on the basis of the results in Sec. 4, we have 
for the stamp contact pressure and settling 

which agrees with the solution obtained in /4/ by another method. 
We also consider the problem of the central impression of a stiff elliptic cylinder for 

which the base shape is described by the function 

f (x0) = 'I;,orl* + &,*%'* x0 E 0 G.2) 

in an inhomogeneous half-space. 
Using the results in Sec. 4, we find that the contact pressure in this case is given by 

the formula 

p(O) (&) = (p?jo f p6”\z1’ -L p(O) o,#) 1 - ( 
=I’ 

, . Lllp- 
s)y’(o-1) 

(5.3) 

while the constants in (5.3) and the stamp settling satisfy the relationships 

(5.4) 
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A SPECIAL RELATIONSHIP IN SPHEROIDAL WAVE FUNCTIONS AND 
ITS APPLICATION TO CONTACT PROBLEMS* 

S.M. MEHITARYAN 

A spectral and kindred relationship are set up by methods of the 
theory of the generalized potential /1/ for an integral operator generated 
by a symmetric difference kernel in the form of a Macdonald function in two 
identical semi-infinite intervals ((-=q -Q),(u,co)} that contain spheroidal 
wave functions. The formula for the expansion of an arbitrary function in 
these functions is also set up by a well-known method /2/. On the basis 
of the results obtained, a solution is then constructed for the integral 
equation of the contact problem of the impression of two identical stamps 
with half-plane bases into a half-space being deformed in a power-law form 
in the formulation of /3/. 

This contact problem can be described by the same integral equation 
when the elastic modulus of a linearly elastic half-space changes with 
depth according to a power law /l/. 

The spectral relationships in classical orthogonal polynomials for 
extensive classes of integral operators in mathematical physics are 
presented in /4,5/, where the method of orthogonal polynomials based on 
them is also elucidated, and numerous applications of this method are given 
to contact and mixed problems of elasticity theory. We also mention /6-9/ 
which are related directly to the investigation presented.here. 

1, Consider the integral equation 

-0. OD 

in order to set up a spectral relationship for the integral operator 9% (y) = Km,, where K,(y) 
is the Macdonald function. 
gamma function) 

To this end, following /8/, we introduce the function (r(x) is the 

r (Y, 2, s) = u, (y, z)= s U (x, y, 2) ei’” dx = (1.2) 
-0D 
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